特征工程之数据预处理

Summary 数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。由此可见,特征工程在机器学习中占有相当重要的地位。在实际应用当中,可以说特征工程是机器学习成功的关键。 ...

2023-03-16 19:35 · 10 min · 4589 words · Reid

特征工程之特征选择

Summary 数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。由此可见,特征工程在机器学习中占有相当重要的地位。在实际应用当中,可以说特征工程是机器学习成功的关键。 ...

2023-03-16 19:35 · 10 min · 4632 words · Reid

机器学习之常见损失函数

简介 损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的模型用的损失函数一般也不一样。 损失函数分为经验风险损失函数和结构风险损失函数。经验风险损失函数指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。 ...

2023-03-16 19:35 · 5 min · 2323 words · Reid

机器学习面试题

1. 无监督和有监督的区别? 有监督学习:对具有概念标记(分类)的训练样本进行学习,以尽可能对训练样本集外的数据进行标记(分类)预测。这里,所有的标记(分类)是已知的。因此,训练样本的岐义性低。 ...

2023-03-16 19:35 · 17 min · 8157 words · Reid

最常考的正则问题L1L2

正则化也是校招中常考的题目之一,在去年的校招中,被问到了多次: 1、过拟合的解决方式有哪些,l1和l2正则化都有哪些不同,各自有什么优缺点(爱奇艺) 2、L1和L2正则化来避免过拟合是大家都知道的事情,而且我们都知道L1正则化可以得到稀疏解,L2正则化可以得到平滑解,这是为什么呢? 3、L1和L2有什么区别,从数学角度解释L2为什么能提升模型的泛化能力。(美团) 4、L1和L2的区别,以及各自的使用场景(头条) ...

2023-03-16 19:35 · 1 min · 230 words · Reid

朴素贝叶斯

贝叶斯准备知识 贝叶斯决策论是概率框架下实施决策的基本方法。要了解贝叶斯决策论,首先得先了解以下几个概念:先验概率、条件概率、后验概率、误判损失、条件风险、贝叶斯判别准则 ...

2023-03-16 19:35 · 10 min · 4587 words · Reid

机器学习之优化算法

在调整模型更新权重和偏差参数的方式时,你是否考虑过哪种优化算法能使模型产生更好且更快的效果?应该用梯度下降,随机梯度下降,还是Adam方法? 这篇文章介绍了不同优化算法之间的主要区别,以及如何选择最佳的优化方法。 ...

2023-03-16 19:35 · 11 min · 5252 words · Reid

常见距离的介绍

机器学习常见距离介绍 1. 欧式距离 2. 曼哈顿距离 我们可以定义曼哈顿距离的正式意义为L1-距离或城市区块距离,也就是在欧几里得空间的固定直角坐标系上两点所形成的线段对轴产生的投影的距离总和。例如在平面上,坐标(x1, y1)的点P1与坐标(x2, y2)的点P2的曼哈顿距离为:,要注意的是,曼哈顿距离依赖座标系统的转度,而非系统在座标轴上的平移或映射。 通俗来讲,想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。而实际驾驶距离就是这个“曼哈顿距离”,此即曼哈顿距离名称的来源, 同时,曼哈顿距离也称为城市街区距离(City Block distance)。 ...

2023-03-16 19:35 · 6 min · 2937 words · Reid

数据降维之主成分分析 PCA

Summary PCA 是无监督学习中最常见的数据降维方法,但是实际上问题特征很多的情况,PCA通常会预处理来减少特征个数。 将维的意义: 通过降维提高算法的效率 通过降维更方便数据的可视化,通过可视化我们可以更好的理解数据 ...

2023-03-16 19:35 · 10 min · 4526 words · Reid

最常考的树模型问题

问题目录: 1、决策树的实现、ID3、C4.5、CART(贝壳) 2、CART回归树是怎么实现的?(贝壳) 3、CART分类树和ID3以及C4.5有什么区别(贝壳) 4、剪枝有哪几种方式(贝壳) 5、树集成模型有哪几种实现方式?(贝壳)boosting和bagging的区别是什么?(知乎、阿里) 6、随机森林的随机体现在哪些方面(贝壳、阿里) 7、AdaBoost是如何改变样本权重,GBDT分类树的基模型是?(贝壳) 8、gbdt,xgboost,lgbm的区别(百度、滴滴、阿里,头条) 9、bagging为什么能减小方差?(知乎) ...

2023-03-16 19:35 · 8 min · 3820 words · Reid