一、 python 的多线程不能利用多核CPU

因为GIL (全局解释器锁), Pyhton 只有一个GIL, 在运行Python 时, 就要拿到这个锁,才能运行,在遇到I/O 操作时,会释放这把锁。

如果是纯计算型的程序,没有I/O 操作,解释器会每隔100 次操作就释放这把锁,让别的线程有机会执行(这个次数可以通sys.setcheckinterval来调整), 同一时间内,有且仅会只有一个线程获得GIL 在运行,其他线程都处于等待状态。

  • 如果是CPU 密集型的代码比如,循环,计算等,由于计算量多和大,计算很快就会达到100次,然后触发GIL 的释放与竞争,多个线程来回切换损耗资源,所以在多线程遇到CPU密集型的代码时,效率远远不如单线程高
  • 如果是I/O 密集型代码(文件处理,网络爬虫), 开启多线程实际上是并发,IO操作会进行IO等待,在线程A等待时,自动切换到线程B,这样就提升了效率。

面向I/O的(会调用内建的操作系统C代码的)程序来说,GIL会在这个I/O调用之前被释放,以允许其他线程在这个线程等待I/O的时候运行。如果某线程并未使用很多I/O操作,它会在自己的时间片内一直占用处理器和GIL。 也就是说,I/O密集型的Python程序比计算密集型的Python程序更能充分利用多线程的好处。我们都知道,比方我有一个4核的CPU,那么这样一来,在单位时间内每个核只能跑一个线程,然后时间片轮转切换。 但是Python不一样,它不管你有几个核,单位时间多个核只能跑一个线程,然后时间片轮转。看起来很不可思议?但是这就是GIL搞的鬼。任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁, 让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。通常我们用的解释器是官方实现的CPython,要真正利用多核,除非重写一个不带GIL的解释器。

二、解决办法

就如此?我们没有办法在Python中利用多核?当然可以!刚才的多进程算是一种解决方案,还有一种就是调用C语言的链接库。对所有面向I/O的(会调用内建的操作系统C代码的)程序来说,GIL会在这个I/O调用之前被释放,以允许其他线程在这个线程等待I/O的时候运行。我们可以把一些 计算密集型任务用C语言编写,然后把.so链接库内容加载到Python中,因为执行C代码,GIL锁会释放,这样一来,就可以做到每个核都跑一个线程的目的! 可能有的小伙伴不太理解什么是计算密集型任务,什么是I/O密集型任务?

计算密集型任务的特点是要进行大量的计算,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。

计算密集型任务由于主要消耗CPU资源,因此,代码运行效率至关重要。Python这样的脚本语言运行效率很低,完全不适合计算密集型任务。对于计算密集型任务,最好用C语言编写。

第二种任务的类型是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如Web应用。

IO密集型任务执行期间,99%的时间都花在IO上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Python这样运行速度极低的脚本语言,完全无法提升运行效率。对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差。

综上,Python多线程相当于单核多线程,多线程有两个好处:CPU并行,IO并行,单核多线程相当于自断一臂。所以,在Python中,可以使用多线程,但不要指望能有效利用多核。如果一定要通过多线程利用多核,那只能通过C扩展来实现,不过这样就失去了Python简单易用的特点。不过,也不用过于担心,Python虽然不能利用多线程实现多核任务,但可以通过多进程实现多核任务。多个Python进程有各自独立的GIL锁,互不影响。

三、其他解释

在我们回过头看下那句经典的话"因为GIL的存在,python的多线程不能利用多核CPU",这句话很容易让人理解成GIL会让python在一个核心上运行,有了今天的例子我们再来重新理解这句话,GIL的存在让python在同一时刻只能有一个线程在运行,这毋庸置疑,但是它并没有给线程锁死或者说指定只能在某个cpu上运行,另外我需要说明一点的是GIL是与进程对应的,每个进程都有一个GIL。python线程的执行流程我的理解是这样的 线程 ——>抢GIL——>CPU 这种执行流程导致了CPU密集型的多线程程序虽然能够利用多核cpu时跟单核cpu是差不多的,并且由于多个线程抢GIL这个环节导致运行效率<=单线程。看到这可能会让人产生一种错觉,有了GIL后python是线程安全的,好像根本不需要线程锁,而实际情况是线程拿到CPU资源后并不是一直执行的,python解释器在执行了该线程100条字节码(注意是字节码不是代码)时会释放掉该线程的GIL,如果这时候没有加锁那么其他线程就可能修改该线程用到的资源; 另外一个问题是遇到IO也会释放GIL

最后结论是,因为GIL的存在,python的多线程虽然可以利用多核CPU,但并不能让多个核同时工作。