1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
  | import numpy as np
from .metrics import accuracy_score
# accuracy_score方法:查看准确率
class LogisticRegression:
    def __init__(self):
        """初始化Logistic Regression模型"""
        self.coef_ = None
        self.intercept_ = None
        self._theta = None
    def _sigmiod(self, t):
        """函数名首部为'_',表明该函数为私有函数,其它模块不能调用"""
        return 1. / (1. + np.exp(-t))
    def fit(self, X_train, y_train, eta=0.01, n_iters=1e4):
        """根据训练数据集X_train, y_train, 使用梯度下降法训练Logistic Regression模型"""
        assert X_train.shape[0] == y_train.shape[0], \
            "the size of X_train must be equal to the size of y_train"
        def J(theta, X_b, y):
            y_hat = self._sigmiod(X_b.dot(theta))
            try:
                return - np.sum(y*np.log(y_hat) + (1-y)*np.log(1-y_hat)) / len(y)
            except:
                return float('inf')
        def dJ(theta, X_b, y):
            return X_b.T.dot(self._sigmiod(X_b.dot(theta)) - y) / len(X_b)
        def gradient_descent(X_b, y, initial_theta, eta, n_iters=1e4, epsilon=1e-8):
            theta = initial_theta
            cur_iter = 0
            while cur_iter < n_iters:
                gradient = dJ(theta, X_b, y)
                last_theta = theta
                theta = theta - eta * gradient
                if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
                    break
                cur_iter += 1
            return theta
        X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
        initial_theta = np.zeros(X_b.shape[1])
        self._theta = gradient_descent(X_b, y_train, initial_theta, eta, n_iters)
        self.intercept_ = self._theta[0]
        self.coef_ = self._theta[1:]
        return self
    def predict_proda(self, X_predict):
        """给定待预测数据集X_predict,返回 X_predict 中的样本的发生的概率向量"""
        assert self.intercept_ is not None and self.coef_ is not None, \
            "must fit before predict!"
        assert X_predict.shape[1] == len(self.coef_), \
            "the feature number of X_predict must be equal to X_train"
        X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])
        return self._sigmiod(X_b.dot(self._theta))
    def predict(self, X_predict):
        """给定待预测数据集X_predict,返回表示X_predict的分类结果的向量"""
        assert self.intercept_ is not None and self.coef_ is not None, \
            "must fit before predict!"
        assert X_predict.shape[1] == len(self.coef_), \
            "the feature number of X_predict must be equal to X_train"
        proda = self.predict_proda(X_predict)
        # proda:单个待预测样本的发生概率
        # proda >= 0.5:返回元素为布尔类型的向量;
        # np.array(proda >= 0.5, dtype='int'):将布尔数据类型的向量转化为元素为 int 型的数组,则该数组中的 0 和 1 代表两种不同的分类类别;
        return np.array(proda >= 0.5, dtype='int')
    def score(self, X_test, y_test):
        """根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""
        y_predict = self.predict(X_test)
        # 分类问题的化,查看标准是分类的准确度:accuracy_score(y_test, y_predict)
        return accuracy_score(y_test, y_predict)
    def __repr__(self):
        """实例化类之后,输出显示 LogisticRegression()"""
        return "LogisticRegression()"
  |