Word2vec
Word2vec 介绍 Word2Vec是google在2013年推出的一个NLP工具,它的特点是能够将单词转化为向量来表示。首先,word2vec可以在百万数量级的词典和上亿的数据集上进行高效地训练;其次,该工具得到的训练结果——词向量(word embedding),可以很好地度量词与词之间的相似性。随着深度学习(Deep Learning)在自然语言处理中应用的普及,很多人误以为word2vec是一种深度学习算法。其实word2vec算法的背后是一个浅层神经网络(有一个隐含层的神经元网络)。另外需要强调的一点是,word2vec是一个计算word vector的开源工具。当我们在说word2vec算法或模型的时候,其实指的是其背后用于计算word vector的CBOW模型和Skip-gram模型。很多人以为word2vec指的是一个算法或模型,这也是一种谬误。 ...