随机森林(回归树)模型
调参 ★ 在 scikit-learn 中,Random Forest(以下简称RF)的分类类是 RandomForestClassifier,回归类是 RandomForestRegressor。 RF 需要调参的参数也包括两部分,第一部分是 Bagging 框架的参数,第二部分是 CART 决策树的参数。下面我们就对这些参数做一个介绍。 ...
调参 ★ 在 scikit-learn 中,Random Forest(以下简称RF)的分类类是 RandomForestClassifier,回归类是 RandomForestRegressor。 RF 需要调参的参数也包括两部分,第一部分是 Bagging 框架的参数,第二部分是 CART 决策树的参数。下面我们就对这些参数做一个介绍。 ...
随机森林算法思想 随机森林(Random Forest)使用多个CART决策树作为弱学习器,不同决策树之间没有关联。当我们进行分类任务时,新的输入样本进入,就让森林中的每一棵决策树分别进行判断和分类,每个决策树会得到一个自己的分类结果,决策树的分类结果中哪一个分类最多,那么随机森林就会把这个结果当做最终的结果。 ...